The Computing & Interdisciplinary Systems Office

Annual Review and Planning Meeting October 9-10, 2002

NPSS SPACE TEAM

Tom Lavelle

2002 CISO Review

Introduction

- NASA working to expand NPSS to space applications
- Working with Aerojet, Rocketdyne and PW to develop this capability
- Working both conventional rockets and combined cycles
 - Combined cycles of interest to NASA (TBCC, RBCC)
- Combined cycle needs are driving us to develop a heat transfer and hypersonic capability

Pratt & Whitney
Space Propulsion
NPSS Activities

Development of NPSS for Space Propulsion Applications

NPSS Annual Review October 9-10, 2002

2002 CISO Review

P&W Space Propulsion Modeling

- Updated NPSS model of 2GRLV COBRA LH₂
 / LO₂ engine
- Validated throttle transient operation against ROCETS model of COBRA engine
- Supported development of the Hypersonic ISTAR engine NPSS component elements to enable simulation of full trajectory performance
- Submitted revised NPSS component elements to NASA

P&W Space Propulsion Modeling

Why does P&W Space Propulsion Want to Develop NPSS?

- NPSS would be a Corporate-wide application (P&W Jets, IFC, UTRC, etc.,)
- NPSS would create a Common Rocket Airbreathing modeling system
 - Enables RBCC, TBCC modeling within single architecture
 - · Eliminates requirement for manual data transfer for systems integration
 - · Enables overall system optimization
- NPSS should reduce Joint Venture long-term modeling and analysis costs and reduce potential for confusion between multiple models
 - Applicable to ISTAR Consortium
 - No Need to Translate Methods Between P&W, Aerojet & Rocketdyne
 - No Need to Resolve Differences Between Multiple System Models
 - Enables Multi-site Real-time analysis
- NPSS has the Potential to become an Industry and DoD Standard
 - Lockheed & Boeing participating in NPSS Development
 - Aerojet & Rocketdyne participating in NPSS Development
- NPSS is a Flexible and Growth-Capable Architecture
 - Multidisciplinary "Zooming" inherent capability single environment for 0-D through 3-D Analysis
 - Modern Object-Oriented programming that facilitates code re-usability

2002 CISO Review

Aerojet GFY 2002 Tasks

- Support Development and Evaluation of RBCC & Ramjet/Scramjet Components
 - Scramjet entropy limit burner control volume model implemented
- Develop Liquid Rocket Engine Model
 - Create system simulation of existing engine
 - Verify against existing system model and applicable test data
 - New components useful for rocket and RBCC application
- Titan Stage 2 Engine Selected For Simulation
- Focus On Transient Model

Initial Results Are Promising

Results shown for dummy sample pipe

AEROJET

2002 CISO Review

NPSS Benefits

- Integrated Model Reduces Amount Of Manual Iteration
- Ability To Specify Solver Dependents And Independents Very Useful For Design Studies
- Engine Model Easily Integrated With Facility Model To Support Wind Tunnel Testing
- NPSS Modeling Is Being Used To Support Scramjet Engine Development For The DARPA/ONR HyFly Program

AEROJET

NASA GRC / Boeing-Rocketdyne NPSS Enhancement

Objective

- "... increase the usability of the current NPSS code/architecture by incorporating an advanced space transportation propulsion system capability into the existing NPSS code."
 - Begin defining advanced capabilities for NPSS
 - · Provide an enhancement for the NPSS code/architecture
- Complementary with other efforts
 - _ |star
 - Air Force Supersonic/Hypersonic Vehicle Design (SHVD) program
 - NASA MSFC Intelligent Design Advisor (IDA)
 - Boeing Integrated Vehicle Design System (BIVDS)

Status

- Key enhancement defined (high-fidelity inlet analysis)
 - 2001: 3-D inlet geometry module completed; basis for automated inlet analysis module in IDA
 - 2002: 3-D geometry module enhanced to include I^{star} features; basis for future automated inlet analysis in SHVD
- Groundwork laid for subsequent complementary enhancements

2002 CISO Review

NPSS: CEA, Janaf, GasTbl Comparison

Hi-Mach Afterburning Turbojet, OPR 10

Janaf & GasTbl

LHV = 1875

CEA (fuel JP-7)

Primary Burner: hRef= -782

Afterburner: hRef = -1284

Run Time: Janaf ~ 100 times faster than CEA

T4 (Turbine Vane Inlet) vs. MN

Space Shuttle Main Engine (SSME) Modeling in NPSS

Purpose

To develop and verify the use of NPSS for space propulsion system modeling using an established benchmark system – the SSME.

Approach

- Validate the NPSS model results against those from an established simulation program – the Rocket Engine Transient Simulator (ROCETS) software.
- Demonstrate NPSS benefits, enhanced capabilities and flexibility relative to existing simulation software.
- Develop a library of space component models (turbines, pumps, ducts, combustors, etc.) which can be used generically to model other space systems.

SSME Modeling with NPSS (continued)

Progress

- Select library of generic space components developed.
- Component models unit tested.
- Preliminary modifications to NPSS thermo package interface completed.
- SSME system model completed.
- Beginning SSME system model testing (to be completed Oct 2002).

Lessons Learned

- Space propulsion systems have a very different set of data flow requirements than air-breathing elements typically do. The NPSS architecture will handle this, but requires the component programmer to clearly understand differences.
- Space propulsion systems require fluid input and output port interfaces that are more flexible than those typically required for air-breathing system models. We need to disable some of the features included to prevent users from doing something unintended.

Rocketdyne Division

2002 CISO Review

Status of Combined Cycle Work (CC)

- Team has developed an initial hypersonic library
- · Team has developed an initial heat transfer capability
- Test models created of ISTAR at different operating points
 - Operating points run as separate design points
 - Not an NPSS issue, don't have off-design data

Hypersonic/Heat Transfer Library

- Created new elements
 - Isolator, Burner, RocketMixer, Heat Transfer
- Heat transfer based on expander cycle (cool-side) and new heat transfer module (hot-side)
- Serve as a good first pass
 - Need to be upgraded to be accepted by the hypersonic community
- Major part of this years work will be to get a first rate hypersonic/heat transfer capability

2002 CISO Review

ISTAR Demo Models

- Model the feed system and flowpath together
 - Truly are combined cycle models
- Feed system has an oxidizer and fuel legs
- Rocket exhausts into the flowpath in a mixer element
- Heat transfer from flowpath has a major impact on feedsystem balance and feed system obviously effects flowpath solution
- Need combined solutions

Future Plans for Space Team

- Develop first-rate rocket analysis capability
- Develop first-rate hypersonic capability
- Support NASA programs
 - TBCC/RTA
 - ISTAR????

